If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x/x-2-2x+3/x-3=3-x^2/x^2-5x+6
We move all terms to the left:
x/x-2-2x+3/x-3-(3-x^2/x^2-5x+6)=0
Domain of the equation: x^2-5x+6)!=0
x∈R
Domain of the equation: x!=0We add all the numbers together, and all the variables
x∈R
-(3-x^2/x^2-5x+6)-2x+x/x+3/x-5=0
We get rid of parentheses
x^2/x^2+5x-2x+x/x+3/x-3-6-5=0
Fractions to decimals
3/x+5x-2x-3-6-5+1+1=0
We multiply all the terms by the denominator
5x*x-2x*x-3*x-6*x-5*x+1*x+1*x+3=0
We add all the numbers together, and all the variables
-12x+5x*x-2x*x+3=0
Wy multiply elements
5x^2-2x^2-12x+3=0
We add all the numbers together, and all the variables
3x^2-12x+3=0
a = 3; b = -12; c = +3;
Δ = b2-4ac
Δ = -122-4·3·3
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{3}}{2*3}=\frac{12-6\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{3}}{2*3}=\frac{12+6\sqrt{3}}{6} $
| z-7/9=2/3 | | -2(3a+2)=6(-2a+1) | | (4x+7)+(2x+53)=180 | | 100=70+60-50+x | | 4,287-c=3,000 | | 4x/3+7=19 | | 100x(2x-1)=8(2x+1)+14 | | x+(x/2)=113 | | x/4-x=7 | | 5+x=3(x+1) | | x÷4-x=7 | | 6-5x=6x-8x+2 | | 4.9x^2+14x-98=0 | | (1/4)*n=25 | | x+(x*(2,5/100))=6765 | | 2(p+12)=5p+2 | | x-11/8=1/8 | | X+4=4x=90 | | X2+11x+30=(x+6)(x) | | 9+2p-5p=3-4p | | 6x+20=150-4x | | f(5)=1/3(5-4) | | 14+8=6x | | (w+4)^2-27=0 | | 3x+2x+80=90 | | A=0.25m+500 | | 5x=6x+2x | | 8x-2-3=3 | | 5x–5=3x+9 | | x-6=3.5 | | 3x-21=6-2x | | 3x+3=-57 |